Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2305322120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603766

RESUMO

T cell bispecific antibodies (TCBs) are the focus of intense development for cancer immunotherapy. Recently, peptide-MHC (major histocompatibility complex)-targeted TCBs have emerged as a new class of biotherapeutics with improved specificity. These TCBs simultaneously bind to target peptides presented by the polymorphic, species-specific MHC encoded by the human leukocyte antigen (HLA) allele present on target cells and to the CD3 coreceptor expressed by human T lymphocytes. Unfortunately, traditional models for assessing their effects on human tissues often lack predictive capability, particularly for "on-target, off-tumor" interactions. Here, we report an immune-infiltrated, kidney organoid-on-chip model in which peripheral blood mononuclear cells (PBMCs) along with nontargeting (control) or targeting TCB-based tool compounds are circulated under flow. The target consists of the RMF peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) presented on HLA-A2 via a bivalent T cell receptor-like binding domain. Using our model, we measured TCB-mediated CD8+ T cell activation and killing of RMF-HLA-A2-presenting cells in the presence of PBMCs and multiple tool compounds. DP47, a non-pMHC-targeting TCB that only binds to CD3 (negative control), does not promote T cell activation and killing. Conversely, the nonspecific ESK1-like TCB (positive control) promotes CD8+ T cell expansion accompanied by dose-dependent T cell-mediated killing of multiple cell types, while WT1-TCB* recognizing the RMF-HLA-A2 complex with high specificity, leads solely to selective killing of WT1-expressing cells within kidney organoids under flow. Our 3D kidney organoid model offers a platform for preclinical testing of cancer immunotherapies and investigating tissue-immune system interactions.


Assuntos
Anticorpos Biespecíficos , Humanos , Antígeno HLA-A2 , Leucócitos Mononucleares , Rim , Organoides
2.
Elife ; 102021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34378534

RESUMO

Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.


Assuntos
Anticorpos Biespecíficos/efeitos adversos , Dispositivos Lab-On-A-Chip/estatística & dados numéricos , Linfócitos T/imunologia , Animais , Feminino , Células HEK293 , Células HeLa , Humanos , Imunoterapia/métodos , Camundongos
3.
Lab Chip ; 20(18): 3365-3374, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32761043

RESUMO

The multiphasic etiology of tissue inflammation and the fundamental immunological differences between species render inflammatory pathologies difficult to recapitulate in animal models, and account for the paucity of therapies that are successfully translated from rodents to humans. Here, we present a human-relevant organ-on-a-chip platform for experimental inflammatory diseases. We created an immunocompetent in vitro gut model by incorporating intestinal epithelial and immune cells into microfluidic chambers that permit cell movement across an extracellular matrix (ECM) and fluidic channels. This is the first model that integrates a mucosal barrier, a three-dimensional ECM, resident and infiltrating immune cells, and simulates a functional crosstalk that ultimately triggers cellular processes representative of inflammation. Under homeostatic conditions, enterocytes form a tight epithelium and subepithelial macrophages are non-activated. Introduction of pro-inflammatory mediators triggers macrophage activation and inflammation-induced intestinal barrier leakiness. Neutrophils in a parallel, matrix-separated non-epithelial channel are attracted by such a pro-inflammatory microenvironment and migrate through the extracellular matrix, further exacerbating tissue inflammation and damage. With this model, we provide the foundations to recapitulate and investigate the onset of tissue inflammation in a controlled, human-relevant system.


Assuntos
Inflamação , Dispositivos Lab-On-A-Chip , Animais , Matriz Extracelular , Homeostase , Macrófagos
4.
PLoS One ; 15(6): e0232603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530964

RESUMO

Drug discovery with phosphorothioate oligonucleotides is an area of intensive research. In this study we have controlled the stereochemistry of the phosphorothioate backbone of LNA oligonucleotides to investigate the differences in safety profile, target mRNA knock down, and cellular uptake in vitro. The study reveals that controlling only four stereocenters in an isomeric phosphorothioate mixture can improve the therapeutic index significantly by improving safety without compromising activity.


Assuntos
Oligonucleotídeos/química , Animais , Sobrevivência Celular , Células Cultivadas , Química Farmacêutica , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Humanos , Túbulos Renais/metabolismo , Camundongos , Estrutura Molecular , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/toxicidade , Oligonucleotídeos Fosforotioatos/química , RNA Mensageiro/antagonistas & inibidores
5.
Lab Chip ; 20(7): 1177-1190, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129356

RESUMO

Drug-induced gastrointestinal toxicities (DI-GITs) are among the most common adverse events in clinical trials. High prevalence of DI-GIT has persisted among new drugs due in part to the lack of robust experimental tools to allow early detection or to guide optimization of safer molecules. Developing in vitro assays for the leading GI toxicities (nausea, vomiting, diarrhoea, constipation, and abdominal pain) will likely involve recapitulating complex physiological properties that require contributions from diverse cell/tissue types including epithelial, immune, microbiome, nerve, and muscle. While this stipulation may be beyond traditional 2D monocultures of intestinal cell lines, emerging 3D GI microtissues capture interactions between diverse cell and tissue types. These interactions give rise to microphysiologies fundamental to gut biology. For GI microtissues, organoid technology was the breakthrough that introduced intestinal stem cells with the capability of differentiating into each of the epithelial cell types and that self-organize into a multi-cellular tissue proxy with villus- and crypt-like domains. Recently, GI microtissues generated using miniaturized devices with microfluidic flow and cyclic peristaltic strain were shown to induce Caco2 cells to spontaneously differentiate into each of the principle intestinal epithelial cell types. Second generation models comprised of epithelial organoids or microtissues co-cultured with non-epithelial cell types can successfully reproduce cross-'tissue' functional interactions broadening the potential of these models to accurately study drug-induced toxicities. A new paradigm in which in vitro assays become an early part of GI safety assessment could be realized if microphysiological systems (MPS) are developed in alignment with drug-discovery needs. Herein, approaches for assessing GI toxicity of pharmaceuticals are reviewed and gaps are compared with capabilities of emerging GI microtissues (e.g., organoids, organ-on-a-chip, transwell systems) in order to provide perspective on the assay features needed for MPS models to be adopted for DI-GIT assessment.


Assuntos
Microfluídica , Organoides , Células CACO-2 , Humanos , Mucosa Intestinal , Intestinos
6.
Proc Natl Acad Sci U S A ; 116(12): 5399-5404, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833403

RESUMO

Three-dimensional renal tissues that emulate the cellular composition, geometry, and function of native kidney tissue would enable fundamental studies of filtration and reabsorption. Here, we have created 3D vascularized proximal tubule models composed of adjacent conduits that are lined with confluent epithelium and endothelium, embedded in a permeable ECM, and independently addressed using a closed-loop perfusion system to investigate renal reabsorption. Our 3D kidney tissue allows for coculture of proximal tubule epithelium and vascular endothelium that exhibits active reabsorption via tubular-vascular exchange of solutes akin to native kidney tissue. Using this model, both albumin uptake and glucose reabsorption are quantified as a function of time. Epithelium-endothelium cross-talk is further studied by exposing proximal tubule cells to hyperglycemic conditions and monitoring endothelial cell dysfunction. This diseased state can be rescued by administering a glucose transport inhibitor. Our 3D kidney tissue provides a platform for in vitro studies of kidney function, disease modeling, and pharmacology.


Assuntos
Túbulos Renais Proximais/metabolismo , Reabsorção Renal , Albuminas/metabolismo , Glucose/metabolismo , Humanos , Imageamento Tridimensional , Túbulos Renais Proximais/irrigação sanguínea , Túbulos Renais Proximais/ultraestrutura , Microscopia Eletrônica , Modelos Biológicos , Reabsorção Renal/fisiologia
7.
Mol Ther Nucleic Acids ; 14: 67-79, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583097

RESUMO

Targeted delivery of antisense oligonucleotide (AON) drugs is a promising strategy to increase their concentration in the desired tissues and cell types while reducing access to other organs. Conjugation of AONs to N-acetylgalactosamine (GalNAc) has been shown to efficiently shift their biodistribution toward the liver via high-affinity binding to the asialoglycoprotein receptor (ASGPR) expressed at the surface of hepatocytes. Nevertheless, GalNAc conjugation does not prevent accumulation of AONs in the kidney cortex, and GalNAc-conjugated AONs might cause kidney toxicities, for example, under conditions of ASGPR saturation. Here, we investigated the nephrotoxicity potential of GalNAc-conjugated AONs by in vitro profiling of AON libraries in renal proximal tubule epithelial cells (PTECs) and in vivo testing of selected candidates. Whereas GalNAc-conjugated AONs appeared generally innocuous to PTECs, some caused mild-to-moderate nephrotoxicity in rats. Interestingly, the in vivo kidney liabilities could be recapitulated in vitro by treating PTECs with the unconjugated (or naked) parental AONs. An in vitro mechanistic study revealed that GalNAc conjugation attenuated AON-induced renal cell toxicity despite intracellular accumulation similar to that of naked AONs and independent of target knockdown. Overall, our in vitro findings reveal ASGPR-independent properties of GalNAc AONs that confer a favorable safety profile at the cellular level, which may variably translate in vivo due to catabolic transformation of circulating AONs.

8.
Mol Cancer Ther ; 17(7): 1464-1474, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654069

RESUMO

Combination of targeted therapies is expected to provide superior efficacy in the treatment of cancer either by enhanced antitumor activity or by preventing or delaying the development of resistance. Common challenges in developing combination therapies include the potential of additive and aggravated toxicities associated with pharmacologically related adverse effects. We have recently reported that combination of anti-HER2 and anti-HER3 antibodies, pertuzumab and lumretuzumab, along with paclitaxel chemotherapy in metastatic breast cancer, resulted in a high incidence of diarrhea that ultimately limited further clinical development of this combination. Here, we further dissected the diarrhea profile of the various patient dose cohorts and carried out in vitro investigations in human colon cell lines and explants to decipher the contribution and the mechanism of anti-HER2/3 therapeutic antibodies to intestinal epithelium malfunction. Our clinical investigations in patients revealed that while dose reduction of lumretuzumab, omission of pertuzumab loading dose, and introduction of a prophylactic antidiarrheal treatment reduced most severe adverse events, patients still suffered from persistent diarrhea during the treatment. Our in vitro investigations showed that pertuzumab and lumretuzumab combination treatment resulted in upregulation of chloride channel activity without indication of intestinal barrier disruption. Overall, our findings provide a mechanistic rationale to explore alternative of conventional antigut motility using medication targeting chloride channel activity to mitigate diarrhea of HER combination therapies. Mol Cancer Ther; 17(7); 1464-74. ©2018 AACR.


Assuntos
Anticorpos Anti-Idiotípicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Diarreia/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Adulto , Idoso , Anticorpos Anti-Idiotípicos/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Terapia Combinada , Diarreia/induzido quimicamente , Diarreia/patologia , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores
9.
Invest New Drugs ; 36(5): 848-859, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29349598

RESUMO

Purpose To investigate the safety and clinical activity of comprehensive human epidermal growth factor receptor (HER) family receptor inhibition using lumretuzumab (anti-HER3) and pertuzumab (anti-HER2) in combination with paclitaxel in patients with metastatic breast cancer (MBC). Methods This phase Ib study enrolled 35 MBC patients (first line or higher) with HER3-positive and HER2-low (immunohistochemistry 1+ to 2+ and in-situ hybridization negative) tumors. Patients received lumretuzumab (1000 mg in Cohort 1; 500 mg in Cohorts 2 and 3) plus pertuzumab (840 mg loading dose [LD] followed by 420 mg in Cohorts 1 and 2; 420 mg without LD in Cohort 3) every 3 weeks, plus paclitaxel (80 mg/m2 weekly in all cohorts). Patients in Cohort 3 received prophylactic loperamide treatment. Results Diarrhea grade 3 was a dose-limiting toxicity of Cohort 1 defining the maximum tolerated dose of lumretuzumab when given in combination with pertuzumab and paclitaxel at 500 mg every three weeks. Grade 3 diarrhea decreased from 50% (Cohort 2) to 30.8% (Cohort 3) with prophylactic loperamide administration and omission of the pertuzumab LD, nonetheless, all patients still experienced diarrhea. In first-line MBC patients, the objective response rate in Cohorts 2 and 3 was 55% and 38.5%, respectively. No relationship between HER2 and HER3 expression or somatic mutations and clinical response was observed. Conclusions Combination treatment with lumretuzumab, pertuzumab and paclitaxel was associated with a high incidence of diarrhea. Despite the efforts to alter dosing, the therapeutic window remained too narrow to warrant further clinical development. TRIAL REGISTRATION: on ClinicalTrials.gov with the identifier NCT01918254 first registered on 3rd July 2013.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Paclitaxel/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Adulto , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Diarreia/induzido quimicamente , Feminino , Humanos , Hipopotassemia/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Paclitaxel/efeitos adversos , Polimorfismo de Nucleotídeo Único , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
10.
Nat Commun ; 8(1): 262, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811479

RESUMO

In vitro models that better reflect in vivo epithelial barrier (patho-)physiology are urgently required to predict adverse drug effects. Here we introduce extracellular matrix-supported intestinal tubules in perfused microfluidic devices, exhibiting tissue polarization and transporter expression. Forty leak-tight tubules are cultured in parallel on a single plate and their response to pharmacological stimuli is recorded over 125 h using automated imaging techniques. A study comprising 357 gut tubes is performed, of which 93% are leak tight before exposure. EC50-time curves could be extracted that provide insight into both concentration and exposure time response. Full compatibility with standard equipment and user-friendly operation make this Organ-on-a-Chip platform readily applicable in routine laboratories.Efforts to determine the effects of drugs on epithelial barriers could benefit from better in vitro models. Here the authors develop a microfluidic device supporting the growth and function of extracellular matrix-supported intestinal tubules, and evaluate the effect of staurosporine and acetylsalicylic acid on barrier integrity.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Intestinal/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Células CACO-2 , Técnicas de Cultura de Células/instrumentação , Humanos , Mucosa Intestinal/química , Cinética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação
11.
Mol Ther Nucleic Acids ; 6: 89-105, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28325303

RESUMO

Antisense oligonucleotide (AON) therapeutics offer new avenues to pursue clinically relevant targets inaccessible with other technologies. Advances in improving AON affinity and stability by incorporation of high affinity nucleotides, such as locked nucleic acids (LNA), have sometimes been stifled by safety liabilities related to their accumulation in the kidney tubule. In an attempt to predict and understand the mechanisms of LNA-AON-induced renal tubular toxicity, we established human cell models that recapitulate in vivo behavior of pre-clinically and clinically unfavorable LNA-AON drug candidates. We identified elevation of extracellular epidermal growth factor (EGF) as a robust and sensitive in vitro biomarker of LNA-AON-induced cytotoxicity in human kidney tubule epithelial cells. We report the time-dependent negative regulation of EGF uptake and EGF receptor (EGFR) signaling by toxic but not innocuous LNA-AONs and revealed the importance of EGFR signaling in LNA-AON-mediated decrease in cellular activity. The robust EGF-based in vitro safety profiling of LNA-AON drug candidates presented here, together with a better understanding of the underlying molecular mechanisms, constitutes a significant step toward developing safer antisense therapeutics.

12.
Sci Rep ; 6: 34845, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725720

RESUMO

Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.


Assuntos
Bioimpressão/métodos , Células Epiteliais/citologia , Túbulos Renais Proximais/citologia , Técnicas de Cultura de Órgãos , Engenharia Tecidual , Células Cultivadas , Ciclosporina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/metabolismo , Humanos , Perfusão , Impressão Tridimensional
13.
PLoS One ; 11(7): e0159431, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442522

RESUMO

Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development.


Assuntos
Bioensaio/métodos , Fígado/patologia , Oligonucleotídeos/toxicidade , Preparações Farmacêuticas/química , Testes de Toxicidade , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cocultura , Criopreservação , Citocinas/biossíntese , DNA de Cadeia Simples/toxicidade , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Reprodutibilidade dos Testes
14.
Nat Cell Biol ; 17(1): 57-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25487280

RESUMO

The rising incidence of obesity and related disorders such as diabetes and heart disease has focused considerable attention on the discovery of new therapeutics. One promising approach has been to increase the number or activity of brown-like adipocytes in white adipose depots, as this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has become an appealing therapeutic strategy to combat obesity. Here, we report a screening platform for the identification of small molecules capable of promoting a white-to-brown metabolic conversion in human adipocytes. We identified two inhibitors of Janus kinase (JAK) activity with no precedent in adipose tissue biology that stably confer brown-like metabolic activity to white adipocytes. Importantly, these metabolically converted adipocytes exhibit elevated UCP1 expression and increased mitochondrial activity. We further found that repression of interferon signalling and activation of hedgehog signalling in JAK-inactivated adipocytes contributes to the metabolic conversion observed in these cells. Our findings highlight a previously unknown role for the JAK-STAT pathway in the control of adipocyte function and establish a platform to identify compounds for the treatment of obesity.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Janus Quinase 3/antagonistas & inibidores , Oxazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Proteína Morfogenética Óssea 7 , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Interferon gama/biossíntese , Interferon gama/farmacologia , Canais Iônicos/biossíntese , Janus Quinase 1/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Obesidade/prevenção & controle , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Proteína Desacopladora 1 , Alcaloides de Veratrum/farmacologia
15.
Cell Stem Cell ; 12(2): 238-51, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23246482

RESUMO

Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report here the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter for which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease-dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor-neuron death, and hepatitis C infection. We found little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease.


Assuntos
Desoxirribonucleases/genética , Células-Tronco/enzimologia , Alelos , Genoma Humano/genética , Humanos , Mutação
16.
Dev Cell ; 20(5): 583-596, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21571217

RESUMO

WTX is an X-linked tumor suppressor targeted by somatic mutations in Wilms tumor, a pediatric kidney cancer, and by germline inactivation in osteopathia striata with cranial sclerosis, a bone overgrowth syndrome. Here, we show that Wtx deletion in mice causes neonatal lethality, somatic overgrowth, and malformation of multiple mesenchyme-derived tissues, including bone, fat, kidney, heart, and spleen. Inactivation of Wtx at different developmental stages and in primary mesenchymal progenitor cells (MPCs) reveals that bone mass increase and adipose tissue deficiency are due to altered lineage fate decisions coupled with delayed terminal differentiation. Specification defects in MPCs result from aberrant ß-catenin activation, whereas alternative pathways contribute to the subsequently delayed differentiation of lineage-restricted cells. Thus, Wtx is a regulator of MPC commitment and differentiation with stage-specific functions in inhibiting canonical Wnt signaling. Furthermore, the constellation of anomalies in Wtx null mice suggests that this tumor suppressor broadly regulates MPCs in multiple tissues.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Proteínas Supressoras de Tumor/deficiência
17.
J Biol Chem ; 281(30): 21119-21130, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16735508

RESUMO

BRCA1 is involved both in positive and negative regulation of gene activity as well as in numerous other processes, such as DNA damage response and repair. We recently reported that BRCA1 inhibits RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation by TFIIH and decreases serine 5 phosphorylation levels when introduced into a BRCA1(-/-) cell line. Regulation of CTD phosphorylation is crucial for proper gene expression and response to cellular stresses, such as DNA damage and transcription arrest. A key player in this process, P-TEFb, phosphorylates the CTD on serine 2 of transcriptionally engaged RNA polymerase II, and its kinase activity was shown to be up-regulated when cells are exposed to transcriptional stress such as UV irradiation. Here, we investigate the effect of BRCA1 on serine 2 phosphorylation and UV-activated P-TEFb kinase activity. We now show that BRCA1 inhibits immunoprecipitated P-TEFb kinase activity from UV-irradiated cells and preferentially decreases UV-induced serine 2 phosphorylation of soluble, rather than chromatin-bound, RNAPII. We further show that BRCA1 rescues the UV-mediated inhibition of transcriptional activity from nuclear extracts and stimulates endogenous p21 gene expression upon UV irradiation, a function that is dependent of the inhibition of CTD kinase activity. Our results suggest that BRCA1 could act as a CTD kinase inhibitor and, as such, contribute to the regulation of p21 gene expression.


Assuntos
Proteína BRCA1/química , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , RNA Polimerase II/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/química , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Fosforilação , Fator B de Elongação Transcricional Positiva/química , Estrutura Terciária de Proteína , Transcrição Gênica
18.
DNA Cell Biol ; 25(2): 124-34, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16460236

RESUMO

Oxidative stress has been shown to induce ubiquitynation of RNA polymerase II, but direct bearing of that phenomenon on global transcription still remains elusive. In this report, we show that high levels of cellular oxidative stress globally inhibit gene transcription, and that this decrease in transcription is only partly attributable to reduced binding of RNA polymerase II to a model gene promoter. Importantly, we show that this decrease in transcription correlates with a significant decrease in histone H3 and H4 acetylation levels both throughout a model gene, and also globally in the nucleus of cells. Our results suggest that high levels of oxidative stress can inhibit transcription by a mechanism, at least in part, that impedes global histone acetylation levels.


Assuntos
Histonas/metabolismo , Estresse Oxidativo , Transcrição Gênica , Acetilação , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/toxicidade , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
19.
Mol Cell Biol ; 24(16): 6947-56, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282296

RESUMO

A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1(-/-) HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.


Assuntos
Proteína BRCA1/metabolismo , Regulação da Expressão Gênica , RNA Polimerase II/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteína BRCA1/genética , Ciclo Celular/fisiologia , Ciclina H , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Células HeLa , Humanos , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/química , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...